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Abstract

The study of interdependent complex networks in the last decade has shown how cascading failure can result in the
recursive and complete fragmentation of all connected systems from the destruction of a comparatively small number
of nodes. Existing “network of networks” approaches are still in infancy and have shown limits when trying to model
the robustness of real-world systems, due to simplifying assumptions regarding network interdependencies and
post-attack viability. In order to increase the realism of such models, we challenge such assumptions by validating the
following four hypotheses trough experimental results obtained from computer based simulations. Firstly, we suggest
that, in the case of network topologies vulnerable to fragmentation, replacing the standard measure of robustness
based on the size of the one largest remaining connected component by a new measure allowing secondary

components to remain viable when measuring post-attack viability can make a significant improvement to the model.
Secondly, we show that it is possible to influence the way failure propagation is balanced between coupled networks
while keeping the same overall robustness score by allowing nodes in a given network to have multiple counter parts
in another network. Thirdly, we challenge the generalised assumption that partitioning between networks is a good
way to increase robustness and find that isolation is a force as equally destructive as the iterative propagation of
cascading failure. This result significantly alters where the optimum robustness lies in the balance between isolation
and inter-network coupling in such interconnected systems. Finally, we propose a solution to the consequent
problem of seemingly ever increasing vulnerability of interdependent networks to both cascading failure and isolation:
the use of permutable nodes that would give such systems rewiring capabilities. This last concept could have wide

implications when trying to improve the topological resilience of natural or engineered interdependent networks.

Keywords: Resilience; Robustness; Interdependent networks; Symbiotic networks

Background

Avoiding a financial crisis, tackling global warming, or
creating resilient infrastructures are problems that require
researchers to look at the world from a “system of sys-
tems” perspective. Indeed, studying such physical or social
systems in isolation does not grant sufficient informa-
tion to capture the dynamics of an environment where
global and local events result from the emergent com-
plexity of interactions between different interdependent
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entities. Although network theory cannot in its present
infant state model accurately real life interconnected com-
plex networks such as infrastructures in all their complex-
ity, it has nonetheless become a useful tool to discover
certain basic topological rules that even these complex
structures follow when confronted with cascading fail-
ure. Recent work modelling the robustness of “network
of networks” (Buldyrev et al. 2010; Dunn et al. 2013; Gao
et al. 2012, 2014; Leicht and D’Souza 2009; Parshani et al.
2010) has indeed demonstrated that taking into account
the interdependencies between connected systems gives
very different outcomes due to phenomena such as the
amplification of the propagation of cascading failures. The
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state of the art of network theory as a high-level modelling
tool broadly stems from two different sources: mathemat-
ical models inspired from statistical physics and computer
graph based simulations. As this field of research is still
in infancy, such models are presently inevitably limited
when trying to tackle complex real world networks from
a practical point of view. We therefore limit the scope of
this work to a study of network topology robustness to
node removal in an abstract context, and avoid claims of
modelling the functional robustness of real infrastructure
networks, or any sort of risk analysis based on practi-
cal engineering concepts. This being said, we believe that
some of the improvements we suggest to the network the-
ory based model of robustness for coupled networks can
be used to derive some potentially useful mechanisms to
protect engineered networks from cascading failure and
isolation from a topological perspective.

In this work, we consider the following four research
questions and corresponding hypotheses. Firstly, can stan-
dard models of evaluation of multi-network vulnerability
to cascading failure that rely on the existence of one largest
connected component that remains in each network after
losses lead to some substantial inaccuracies in some cir-
cumstances? We suggest that, in cases of network topolo-
gies vulnerable to fragmentation, modifying this model of
robustness by allowing secondary components to remain
viable when measuring post-attack viability can make a
significant improvement. Secondly, if standard models of
evaluation of multi-network vulnerability define the cou-
pling relationship between nodes belonging to different
networks to be one-to-one mappings, can allowing a node
in given network to have multiple counter parts in another
network change the system significantly? We suggest that
it can have consequences on the way failure propaga-
tion is balanced between the coupled networks. Thirdly, is
the generalised assumption that partitioning between net-
work is a good way to decrease vulnerability to cascading
failure in a network of networks misleading? We suggest
that, introducing isolation as a force as equally destruc-
tive as failure propagation can alter drastically where the
optimum robustness lies in such interconnected systems.
Finally, we propose a solution to the consequent problem
of seemingly ever increasing vulnerability of interdepen-
dent networks to both cascading failure and isolation: the
use of permutable nodes that would give such systems
rewiring capabilities.

I order to address these questions, the paper is struc-
tured as follows: after briefly expending on what the
scope of this work does not cover ( we do not claim to
map interconnected abstract networks to real interdepen-
dent infrastructure networks), we then suggest changes to
improve shortcomings of the topologically centred evalu-
ation of multi-network vulnerability. An overview of the
design of models and experiments is presented, as well
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as a description of the procedures, statistics, and met-
rics used to answer the research questions. Experimental
results are then shown and interpreted. Finally the sig-
nificance of the new adopted assumptions is discussed in
term of changes to our understanding of the robustness
of real interdependent networks, while some of the short-
comings of this work are identified leading to suggested
potential improvements and novel avenues to explore.

The problem of mapping network theory to
real-life interconnected infrastructure networks
Although a promising modelling paradigm, the topologi-
cally centred evaluation of multi-network vulnerability is
still in infancy and has shown limits when trying to model
real world problems such as, for example, infrastruc-
tures power grids blackouts (Hines et al. 2010) where the
authors conclude that “evaluating vulnerability in power
networks using purely topological metrics can be mislead-
ing” Another typical example of graph theory used to try
to model the resilience of an electric power networks can
be found in (Cerda Jacobo 2010). It presents the downside
that it is mostly applied to DC (Direct Current) mod-
els of power flow (a simplified representation (Wood and
Wollenberg 1996) of the Alternative Current or AC volt-
age). This limits the practical value of network theory as a
high-level modelling tool in this area as most of the power
transmission systems in use are based on AC. A long list
of similar examples could be taken from the literature, and
confirm that, despite ongoing efforts, network theory is
still a world apart from practical engineering solutions.

But a closer look to the literature also provides exam-
ples of fundamental rules derived from network theory
in an abstract context that are applicable to real life net-
works from a topological point of view. One example
is the phenomenon of amplification of cascading failure
in interconnected networks (Buldyrev et al. 2010; Dunn
et al. 2013; Gao et al. 2012, 2014; Leicht and D’Souza
2009; Parshani et al. 2010), and another one the identifi-
cation of the vulnerable portions of a network to different
attacks by looking at distinct measures of centrality. These
measures vary from degree (number of connections of a
node), to betweeness-centrality and other complex and
various types of centrality (Beyeler et al. 2007; Crucitti
and Latora 2005; Crucitti et al. 2006; LaViolette et al.
2006; Newman 2003). From an attack/defense perspec-
tive these measures are vital to locate critical nodes in
a network (Crucitti et al. 2004; Dorogovtsev et al. 2008;
Motter 2004).

Therefore, we first want to emphasize that the work
presented in this paper does not claim to analyse the
functional robustness of real infrastructure networks, nor
does it try to model these from a risk analysis perspec-
tive based on practical engineering concepts. We instead
limit the scope of this work to study network topology
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robustness to node removal. Nevertheless, we still believe
that some of the findings presented in this paper might
present some useful insight in a practical engineering con-
text, in particular the fact that isolation can be as equally
destructive as the propagation of cascading failure when
determining the topological robustness of interdependent
networks. One unexpectedly practical and perhaps poten-
tially useful find derived from this observation is the sug-
gestion of permutable nodes as an adaptive mechanism
that could optimise interdependent networks topological
robustness. Such a mechanism appears to protect coupled
networks from the destructive consequences of isolation
and cascading failure and at the same time preserves net-
work resources by limiting the amount of redundancy
needed to absorb a disturbance. In other words, while
nodes that can provide simultaneous links to different net-
works tend to propagate cascading failure .i.e an electric
line that would carry phone communications at the same
time would in fact propagate topological failure through
both phone and electricity networks in case of malfunc-
tion while, on the other hand, nodes that can provide
alternated states of coupling to different networks limit
the topological propagation of cascading failure while pro-
viding an alternate configuration to the system because of
their rewiring capabilities .i.e. roads convertible to land-
ing strips, the Stormwater Management and Road Tunnel
(SMART) in Kuala Lumpur (a tunnel that can alternate
between traffic and storm water management), energy
storage devices on board electric vehicles that can be
plugged to the power grid when not in use so as to store
and produce energy whenever needed, or plants that gen-
erate electricity for production and that can shut down
production and sell power instead.

Four suggested changes to improve models of the
robustness of network of networks to cascading
failure

Some of the shortcomings of the topologically centred
evaluation of multi-network vulnerability as a modelling
tool are rooted in the existence of assumptions that sim-
plify the nature and extent of network interdependency
and the rules that establish the post-attack viability of a
connected component. In order to increase the realism
of existing models of robustness of interdependent net-
works, we change these assumptions as follows: firstly, we
propose to allow secondary components to remain viable
when simulating cascading failure. Secondly, we introduce
many-to-one interdependent mappings and analyse the
consequences of allowing a node in given network to
have multiple counter parts in another network. Thirdly,
we present a measure of the symbiotic viability of net-
work components when faced with isolation that results
in novel strategies on how to achieve robustness in
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interdependent complex networks. Finally, we also pro-
pose a solution to the consequent problem of seemingly
ever increasing vulnerability of interconnected networks
introduced by these symbiotic dependencies: the intro-
duction of permutable nodes that would give such systems
rewiring capabilities.

Suggested change to the first assumption: changing the
post-attack viability when secondary components remain
viable

The first assumption found in many contemporary models
of multi-network resilience relates to post-attack viability.
Robustness has generally been evaluated using an itera-
tive cascading failure process based on percolation theory
where only the one largest connected component remains
in each network after losses. Usually, no secondary com-
ponent is considered alive (Albert et al. 2000a; Bak et al.
1988; Brummitt et al. 2012; Buldyrev et al. 2010; Callaway
et al. 2000; Cohen and Havlin 2002; Latora and Marchiori
2005; Leicht and D’Souza 2009; Najjar and Gaudiot 1990;
Parshani et al. 2010). The first modification suggested in
this work is to allow secondary components to remain
viable when estimating the robustness of a system. When
evaluating the robustness of coupled networks, the stan-
dard approach (Albert et al. 2000a; Bak et al. 1988;
Brummitt et al. 2012; Buldyrev et al. 2010; Callaway et al.
2000; Cohen and Havlin 2002; Latora and Marchiori
2005; Leicht and D’Souza 2009; Najjar and Gaudiot 1990;
Parshani et al. 2010) has been to measure the size of
the one largest connected component remaining in each
interdependent network. This way of evaluating a pair
of coupled networks ignores secondary components and
their potential influence on the post-attack performance
on such a system. However, in fragmented networks, the
presence of secondary clusters could significantly increase
system performance (as illustrated in the first row of
Figure 1). Consequently, we propose to evaluate the post-
attack viability of a network by summing up the relative
sizes of all components above some critical minimum
number of nodes.

Suggested change to the second assumption: changing
dependency links from one-to-one to one-to-many
mappings between networks

A second assumption widely in use in state of the art mod-
els representing inter-network dependencies (Buldyrev
et al. 2010; Fu et al. 2014; Gao et al. 2012; Parshani
et al. 2010) defines the coupling relationship between
nodes belonging to different networks to be one-to-one
mappings (e.g. a node from network A is coupled to
a unique distinct node in a network B). Existing work
tends to focus on varying the density, the correlation
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Figure 1 Single versus multiple components post attack viability. We visualise what is left of interdependent networks after attack depending on
different post-attack viability rules: single versus multiple components tolerated, and isolated versus dependent clusters.

structure, and the directed versus undirected character
of dependencies in order to analyse their effects on net-
work dynamics. Hence, scenarios where several nodes
from one network are likely to be coupled to one single
node in the other network (no many-to-one relationship)
have not yet been fully explored. We change the nature
of network interdependency by allowing a node in given
network to have multiple counter parts in another net-
work (many-to-one mapping). Existing work (Buldyrev
etal. 2010; Gao et al. 2012; Parshani et al. 2010; Schneider
et al. 2013) generally links interdependent networks with
one-to-one mappings (i.e. nodes in network A have a
unique counterpart in network B). A reason for that sit-
uation is that present mathematical frameworks tend to
use generating functions to predict the size of the largest
remaining component after cascading failure and these
are constructed with the assumption that “each node in
network B depends exactly on one node from network
A” (Buldyrev et al. 2010). Although this assumption was
relaxed in further work such as (Schneider et al. 2013)
by stating that a fraction of nodes in A could be cou-
pled with nodes in B, it remains that if one wish to use
the generating functions in their present form, nodes in
one network cannot have several counterparts in another
network. Another reason explaining the absence of mul-
tiple mappings is the very large size of the parameter
space needed to build interdependent networks and the
high computational cost of running simulations that so
far have prevented the exploration of this particular fea-
ture. Assuming the prevalence of one to one mappings
between coupled networks does not fit with the fact
that many nodes in infrastructure networks can have

multiple dependencies (i.e. an airport might require con-
nections to multiple power nodes). Consequently, here
we explore a scenario where many-to-one mapping are
possible between interconnected networks (i.e. a node in
network B has in average m supporting nodes from A
where m > 1). In this work, a many-to-one mapping was
chosen, but a one-to-many mapping (with 0 < m < 1)
is another alternative way of coupling networks that could
potentially be explored in future work. Figure 2 shows how
failure propagates between networks through undirected
dependency in that type of scenario.

Suggested change to the third assumption: changing the
post-attack viability by taking into account symbiotic
interdependency

Symbiotic networks are networks that need to be mutu-
ally connected in order to be viable. In this scenario, a
connected component (i.e., a network fragment) in one
network is viable only if a minimum fraction of its nodes
are connected to a surviving network component from
the other network. Connected components in both infras-
tructure networks are subject to this survival constraint. A
third assumption is that there is no gradient in the degree
of isolation that could influence the viability of a symbi-
otic clusters: research focuses on the limited case where
either clusters are never isolated from the other network
(when all nodes in A are linked to nodes in B) or clus-
ters can stay alive even if isolated from their counter-part
network (Buldyrev et al. 2010; Gao et al. 2012; Parshani
et al. 2010; Schneider et al. 2013). Consequently, the
lesser the connections between networks, the smaller the
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Figure 2 Failure propagation between networks through undirected dependency: one-to-one and many-to-one mapping situations.

probability of cascading failure due to node removal, and
the greater the topological robustness of such systems
(Battiston et al. 2009; Brummitt et al. 2012; Gao et al.
2011b; Panzieri and Setola 2008; Schneider et al. 2013).
We present a novel measure of the symbiotic viability
of network components when faced with isolation that
results in novel strategies on how to achieve robustness.
Previous studies have evaluated the post-attack perfor-
mance of a pair of interdependent networks, A and B,
by measuring the size of the remaining connected com-
ponent(s) in each network after cascading failure. This
calculation has ignored the extent to which either of these
components is connected to surviving nodes in the other
network and assumes implicitly either that clusters are
never isolated (if all A nodes are linked to a B nodes)
(Buldyrev et al. 2010; Gao et al. 2012), or that a cluster
of surviving B nodes can exist as a viable network in the
absence of any connection to the A network, and vice
versa (Schneider et al. 2013). As a consequence, standard
analysis shows that reducing the number of interdepen-
dencies between A and B is a good way of improving

system resilience, since when one network is attacked the
other is shielded from the consequences. However, this
approach to measuring post-attack viability does not take
into account a gradient in the possible degrees of isola-
tion and their impact on the symbiotic nature of systems.
For example, in modern infrastructures, a railway net-
work cannot survive in complete isolation from a road
transport network because it needs the road network to
deliver a minimum amount of passengers, goods, and per-
sonnel in order to operate. Consequently, here we evaluate
the symbiotic post-attack viability of a network by mea-
suring the size of the largest component that meets a
dependency threshold expressed in terms of the propor-
tion of nodes within the component that are connected to
at least one surviving node in the other network. Setting
the threshold at 10%, for instance, demands that in order
for a network B component to be viable, at least 10% of its
nodes must be connected to a surviving A node, i.e., an A
node that itself is within a component that meets the 10%
interdependency threshold. This requirement for the via-
bility of a connected component can be expressed as the
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dependency threshold I', that is to say, the ratio of nodes in
this component that are connected to other live clusters.
The symbiotic viability condition for a given component
can be defined in its simplest form as maintaining the
coupling ratio of the component above an interdepen-
dency threshold I' and can be expressed by the following
equation:

q .
L 1)
i Wit 2 W

Where ¢ is the number of nodes in this component which
are coupled to another component from a different com-
plementary network, g is the number of uncoupled nodes,
I" is the interdependency threshold below which the com-
ponent is not viable, and each coupled node i has a weight
w; while each uncoupled node j has a weight w; (so as to
quantify how important or vital some nodes are compared
to each other). In this work, we study the robustness of
complex interdependent networks by using a simplified
version of the symbiotic viability condition detailed above:
we consider the case where all nodes have an equal weight
an can then rewrite the condition as:

T_>r (2)

q+q "~

A suggested solution to decrease the vulnerability of
interdependent networks to cascading failure: permutable
nodes

Finally, we propose a solution to the consequent problem
of seemingly ever increasing vulnerability of intercon-
nected networks introduced by multiple symbiotic depen-
dencies: the use of permutable nodes that would give
such systems rewiring capabilities akin to those found in
the human brain. We use the measure of symbiotic via-
bility detailed in equation 2 to evaluate the post-attack
viability of symbiotic networks. There are only two ways
to increase the viability condition expressed by this cou-
pling ratio: either add extra coupled nodes to a compo-
nent to increase the weighted sum in the numerator, or
remove uncoupled nodes to reduce the weighted sum in
the denominator. One way to achieve this is to treat cou-
pled and uncoupled nodes like valuable resources that can
be exchanged between mutually connected components
via the creation of permutable infrastructure nodes. An
abstract example of such a mechanism could be the train-
ing of defending players that could alternate between the
roles of midfielders and strikers inside a football team.
Although they might be less efficient as defenders, their
ability to occupy other positions would make their team
more resilient if some strikers were taken out of the
game. If a permutable node is active in one network, its
counter-part in another network is inactive and vice versa.
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When permutation occurs, the active side changes allow-
ing the allocation of a node from one non-essential role
in one network to a potentially crucially needed position
in another. There can be permutation between coupled
nodes, between uncoupled nodes, or between uncoupled
and coupled nodes. Permutation between coupled nodes
is only useful when several remaining components can
exist in each network. In this limited specific case, inter-
dependent links can be “rewired” and exchanged as a valu-
able resource between components of different networks
so as to preserve viability.

Permutation between uncoupled nodes shown in
Figure 3 is only possible when one of the components
can absorb the accumulated loss resulting from the deac-
tivation of the uncoupled nodes. This renders this per-
mutation more difficult to achieve, because in order to
obtain the same increase in the coupling ratio, the min-
imum required number of uncoupled nodes to remove
from the denominator is much higher than to the number
of coupled nodes one has to add in the numerator. One
advantage of swapping uncoupled nodes is that it min-
imises the vulnerability to cascading failure because we do
not increase the number of interdependencies.

Design of models and experiments

We consider two coupled networks A and B of same size
N. The coupled networks sizes considered was N = 500,
so as to guarantee computational feasibility while keep-
ing generalisable topologic features. Four different types
of network topologies are explored: Erdos Reyni, Watts
Strogattz, Barabasi Albert, and ring lattice. We deliber-
ately chose these as they are well known and are affected
in distinctive ways when confronted to random attacks
(Hu and Verma 2011). Different versions of these paired
networks are built, each one with an average degree k
varying from 4 to 24 in order to show the effects of inter-
nal network redundancy over the robustness of the whole
system.

The degree of coupling between the networks is defined
by the fraction g of nodes in network A that are linked
to nodes in network B, as in (Fu et al. 2014) that includes
descriptions of a similar setting. The links between the
networks are constructed with a coupling degree g vary-
ing (through a range of 19 evenly spaced values) from 0.05
to 1.0, in order to show the effects of network interdepen-
dency over the robustness score. Regarding the correla-
tion of inter-network dependencies, nodes that are linked
to another network are selected at random.

Failure propagates between networks through undi-
rected dependency (i.e. if one node in A that is linked
to another node in B is disabled, then the node in B will
also be disabled). The robustness of interdependent net-
works is evaluated by attacking one network and then
by looking at the post-attack viability of both networks
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Figure 3 One example case of the influence of node permutability on post attack viability. We use a permutable node in components with the
following symbiotic viability condition: a component is only alive if at least 1/3 of its nodes are connected to other network. The large network
diagrams on the left represent the two different alternative networks made possible by swapping the states of the permutable node. In the first
alternative scenario, this uncoupled node can be activated in the grey network, with an extra internal (blue) edge. In the second alternative
situation, the grey network node is disabled and the node counter-part in the black network is activated. Disabled nodes and connections in each
alternative scenario are shown with dashed lines. After applying the post-attack viability rule, alternative 2 seems to leave the coupled networks in a

after cascading failure. The initial attack is always done by
selecting a fraction (1 — p) of randomly chosen nodes in
network A.

When secondary components remain viable, the algo-
rithm that evaluate the number of active nodes left in both
networks after attack differs from standard procedure in
one aspect: it does not prune anymore all secondary com-
ponents with the attached iterative failure propagation.
Instead, any component that is above a certain minimum
number of nodes is kept and considered live. In our exper-
iments, any secondary component whose size is superior
to three nodes is considered alive.

One-to-many mappings are created by choosing at ran-
dom a certain number n of distinct nodes in network A,
and then choosing a corresponding number of randomly
selected coupled nodes in network B, with no obligation
for them to be distinct from each other, and then cre-
ating coupling links between them. This produces many
instances of nodes in network A that depend on multiple
coupled nodes in network B. Failure propagation between
networks follows the same rule for both one-to-one and
many-to-one mappings: for each network node to oper-
ate, all of the nodes upon which it depends must be also
be operational.

When taking into account the effects of isolation as a
destructive force as well as the propagation of cascading
failure, the post attack viability of connected components
is evaluated as described in the Algorithm 1.

Algorithm 1 Evaluate symbiotic viability

Require: S, a set of components of networks A and B
Attack S and update S equal cascading_failure(S)
Set there_are_still_components_to_check to TRUE

while there_are_still_components_to_check_flag is
TRUE do
Set there_are_still_components_to_check_flag to

FALSE
for each component, ¢ € S do
if proportion of coupled nodes, q./n,, is inferior to
I then
Disable all nodes in the component
Disable any dependent nodes in other compo-
nents
Propagate cascading failure and update S
throughout cascading_failure(S)
Set there_are_still_components_to_check_flag
to TRUE
end if
end for
end while
return Viability(remaining components)

When we use permutable nodes to decrease the vulner-
ability of interdependent networks to cascading failure, we
first evaluate the symbiotic post-attack viability of con-
nected components, and if these connected components
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are damaged, we then set to switch permutable nodes in a
process as described by Algorithm 2.

Algorithm 2 Permute node roles

Require: S, a set of components of networks A and B
Get list of permutable nodes in S
for each component, ¢ € S do
while proportion of coupled nodes, g./#n, is inferior
tol" do
Permute a new random permutable node out of ¢
(unless by doing so it would have no living neigh-
bours)
end while
end for
Set V = Evaluate_Symbiotic_Viability(S)

Permutation between uncoupled and coupled nodes as
shown in Figure 4 generally offers a significant increase
of the coupling ratio in both networks for the smallest
number of permutations as shown in the result section.
We evaluate the change in post-attack viability of symbi-
otic networks (expressed in Equation 2 and implemented
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as in algorithm 1) over a hundred trials triggered by the
introduction of permutable nodes for different values of
the dependency threshold (0.1 for a weak symbiotic inter-
dependency, 0.3 for an intermediate value, and 0.5 for a
strong symbiosis). Each coupled network has a size of 100
nodes, a coupling degree of 0.5, and a fraction of swap-
pable nodes equal to 40%. Two types of permutation are
considered: either between uncoupled nodes, or between
uncoupled and coupled nodes. In each case, we show the
percentages of coupled networks prevented from being
destroyed after attack, the average number of nodes saved
per trial, and the frequency of dead networks saved for
each attack degree.

The resulting size of the parameter space is such that
around 1675800 simulations of cascading failure have
to be run every time we change the nature of network
interdependency or the post-attack viability rules. The
IRIDIS High Performance Computing Facility available at
the University of Southampton, was used over a period
of several weeks in order to complete this work using
the Python programming language. Results are saved in
multidimensional arrays for each combination of the fol-
lowing experimental parameters: network type, network
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networks in a much better state than alternative 1.
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Figure 4 A different example case of the influence of node permutability on post attack viability. We use a permutable node that can switch from
an uncoupled to a coupled counter-part in components with the following symbiotic viability condition: a component is only alive if at least 1/3 of
its nodes are connected to other network. The large network diagrams on the left represent the two different alternative networks made possible by
swapping the states of the permutable node. Either the uncoupled counter-part of the node is activated in the black network, or the counter-part in
the grey network is activated with an associated interdependent (black) edge, and an extra internal (blue) edge. Disabled nodes and connections in
each alternative scenario are shown with dashed lines. After applying the post-attack viability rule, alternative 2 seems to leave the coupled
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degree, coupling degree, attack degree, and run number.
The values saved are the number of active nodes left,
the transitivity, the average shortest path length, and the
degree histogram for each network, but also for each
connected component inside each network. In the exper-
iments described below, we only use the number of active
nodes left in both networks as raw data. The complete
data sets are quite extensive (in total around 20 Gigabytes)
are available as well as the Python code leading to their
production upon contacting the authors.

Procedures, statistics, and metrics used to answer
the research questions
The robustness of the system is expressed as the area
under the curve defined by the fraction of nodes still alive
in each network for a degree of attack (1 — p) varying
(through a range of 21 evenly spaced values) from 0 to 1.0.
Let Ry be the standard measure of the robustness of a
system of interdependent networks based on the size of
the one largest remaining connected component in each
interdependent network. Let 1 — p be the attack size, and
P(1 — p) be the relative size of the largest connected
cluster in a network after failure. R, is the area under the
curve defined by the fraction of nodes still alive in each
network for varying degrees of attack can be expressed as
follows in Equation 3:

1.0
R= [ pa-p )
1-p=0

Let R,; be the robustness of a system of interdependent
network obtained by measuring the aggregate of the sums
of the relative sizes of all components above some critical
minimum number of nodes. Let S(1 — p, Cy;,) be the sum
of the relative sizes of connected clusters above or equal a
minimum critical size C,,;, in a network after attack. R,
can be expressed as follows in Equation 4:

1.0
Ry, = / S - p, Coin) (4)
1-p=0

Rs and R,, values are used to plot respectively the
single and multiple cluster measurements of robustness
throughout the whole parameter space over these 25 runs.
Each robustness value is represented by a colored cell
in a heatmap, where the position along the horizontal
axis expresses the average internal degrees for each net-
work, and the position along the vertical axis expresses the
degree of coupling between the networks. (See figures in
result section).

Let Ag be the difference of robustness between multiple
and single cluster measurement. Ap = R,, — Ry can be
defined as follows in Equation 5:

1.0
Ag = f [S(L = p, Coi) — P(1 — p)] (5)
1-p=0
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Ap values are used in Figure 5 to show directly the dif-
ference of robustness between multiple and single cluster
measurement for different topologies. Negative values are
represented by a different color gradient (here white to
black) than positive values (here red to yellow).

A similar approach is taken to show the difference of
robustness between one-to-one and many-to-one interde-
pendent mappings as shown in Figure 6.

The robustness is evaluated over 25 runs, where for each
run, new networks are generated. Average value, stan-
dard deviation, and the p value obtained by t-test are then
obtained to compare the robustness in systems with a
different network interdependency or the post-attack via-
bility rule and produce more standard graphs such as the
bar charts seen in the results section.

Results presentation and interpretation

In the following, we will present our analysis of the dif-
ference in robustness that results from the changes out-
lined above over the standard assumptions simplifying the
nature and extent of network interdependency and the
rules that establish the post-attack viability of a connected
component.

Change in robustness when secondary components are
viable

In this section, we attempt to find if there is a signifi-
cant difference of robustness when considering secondary
components as viable instead of just the one single largest
remaining connected component in each network. Exist-
ing work (Albert et al. 2000b) has observed that network
fragmentation results in a distribution of various cluster
sizes (e.g. when a gaint component exist, the second is sig-
nificantly smaller than the largest one, etc...). Still, even if
secondary components are small, if there are enough of
them, they can have a potentially important supporting
role regarding the robustness of a coupled system. Results
from Figure 7 show that there does not seem to be a signif-
icant difference between single and multiple components
evaluation for Erdés-Rényi and Barabasi-Albert pairs of
networks (a one-tail t-test shows an average p-value supe-
rior to 0.1). On the other hand, tolerating secondary
components seems to increase significantly (for a t-test p
value <0.005) the post attack performance of Watts-
Strogatz, and ring lattice topologies.

There is nearly no null or negative difference in
Watts-Strogatz, and ring lattice networks, showing that
robustness using multiple components is systematically
outperforming the single component robustness for these
topologies. It is also worth noticing that for Erd6s-Rényi
and Barabasi-Albert networks, the maximum difference of
robustness is less than is 5%, while for network topologies
more vulnerable to fragmentation such as Watts-Strogatz,
and ring lattice, the maximum difference is more than
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Figure 5 Difference between multiple and single cluster measurement of robustness for Erdés-Rényi, Barabasi-Albert, Watts-Strogatz, and ring
lattice topologies. Each coloured heat-map cell represents the average of the difference of robustness A between multiple and single cluster
measurements for 25 pairs of random 500-node networks in function of the degree of coupling between A and B and the average degree of each
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Figure 7 Robustness with secondary components versus robustness
with single largest remaining connected component.

30%. Networks with lower average degree tend to frag-
ment more easily after attack, and results show that the
lower the degree k, the higher the chance that multi-
component robustness will significantly outperform the
single component robustness. This can be explained by
the fact that, when under attack, networks with lower
internal connectivity tend to transform into a collection
of disconnected components. In this situation, measur-
ing the one largest remaining component and ignoring
all secondary clusters leads to a significant difference in
the evaluation of robustness. The easier to fragment a
network is, the greater the influence exerted by these
secondary components on the functional integrity of an
infrastructure network.

Change in robustness when one node can have multiple
counter parts in another network

Initial results from Figure 8 show that there does noes
seem to be a significant difference of overall robustness
between multiple (a node in network B has in average
m supporting nodes from A where m > 1) and unique
(m = 1) dependencies. Erdés-Rényi, Barabasi-Albert,
Watts-Strogatz, and ring lattice topologies show seem-
ingly identical results.

On the other hand, when comparing the robustness
of individual networks, a significant difference seems to
emerge as shown in Figure 9. In the case of the many-
to-one mapping explored by linking unique nodes in A
to randomly chosen nodes in B, the percolation damages
seem to be increased in network A and decreased in net-
work B. A typical example of such phenomena can be
observed in Figure 10 that shows the difference of robust-
ness between many-to-one and one-to-one mappings for
both Erdés-Rényi networks of average degree k = 4 and
q = 1.0. Failure will spread to a greater portion of network
A, while a smaller fraction of B will be damaged.

u network A
and B
(standard )

network A
and B
(random)

-

&

Average Robustness

0s
04
| | I I I

ER-ER BA-BA WSs-Ws

Figure 8 Difference between multiple and unique dependendes
when considering the global average robustness of all networks.

In the case of a many-to-one mapping, linking unique
nodes in A to randomly chosen nodes in B seems to
be transfer the effects of percolation back to A. Fur-
ther results shown in Figure 6 support this hypothesis as
the heat-maps representing the differences of robustness
between multiple and single dependency mappings show-
ing predominantly gray scales for network A (negative
differences) and mostly red and orange areas for network
B (positive differences). This can be explained by the fact
that, when under attack, the network A has multiple nodes
that depend on a failure from a single node in B. There-
fore, it has less chance to preserve a remaining component
as the propagation of cascading failure is amplified. On
the other hand, there is a greater chance that a portion of
network B will remain untouched because a smaller num-
ber of nodes in B are coupled to potential failures in A.
This result seem to indicate that a many to one mapping
can be used as an effective control mechanism to trans-
fer damages due to cascading failure from one network to
another.

A measure of symbiotic post-attack viability and resulting
novel strategies to achieve robustness

In this scenario, a connected component is viable only if
a minimum fraction of its nodes are connected to another
surviving cluster in a different network. This other clus-
ter is itself subject to the same survival condition. This
requirement for the viability of a connected component
can be expressed as the dependency threshold I', that
is to say, the ratio of nodes in this component that are
connected to other live clusters.

Figure 11 shows that than when components need to
meet a dependency threshold I' = 0.1, the robustness
expressed by the area under the curve measuring the frac-
tion of nodes still alive in network B for varying degrees
of attack is significantly smaller than in the standard case
where the post-attack viability of remaining components
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Figure 9 Difference between multiple and unique dependencies when considering the robustness of individual networks.
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is not affected by their isolation (for I' = 0). This indicates
that there might be a very different optimum when look-
ing at the landscape of robustness scores if a symbiotic
post-attack viability rule is chosen.

Figure 12 confirms that using standard and symbi-
otic interdependency results in different robustness land-
scapes. Post-attack viability is plotted in function of the
degree of coupling g and the average degree k in two
interdependent Barabasi-Albert networks. The standard
measure of post-attack viability (I" = 0) shows an optimum
robustness score at the bottom of the heat map where the
degree of coupling is at its lowest. On the other hand,
when the viability of a cluster is linked to a dependency
threshold I' = 0.1 or I' = 0.2, the heat map shows that
the robustness score is optimal when g is between some
intermediary values (in this particular case, 0.35 and 0.6).
This optimum range of values changes depending of the
value of I'. The Dark blue area at the very bottom shows
a region where the robustness score is null because the
degree of coupling between networks being inferior to

the dependency threshold, the networks end up isolated.
Simulations results have shown that the size of this “null-
viability” area grows linearly with T'. Incidentally, similar
results are observable for Erdds-Rényi, Barabasi-Albert,
Watts-Strogatz, and ring lattice, suggesting a new land-
scape of robustness that has features independent from
the network topology considered.

Figure 13 emphasizes how the introduction of various
level of symbiotic interdependency changes the relation-
ship between robustness and coupling. The robustness of
two interdependent networks A and B with respect to the
degree of coupling q is shown for scenarios where the
value of I' ranges from 0 (standard post-attack viability)
up to 0.5 (at least half of a cluster needs to be connected
to another network to be alive). For I' = 0, the optimum
robustness is attained for the lowest possible coupling
value g = 0. For cases where I' > 0, the optimal robust-
ness does not lie where g = 0, but soars as soon as the
minimum amount of coupling is reached in order to pre-
vent isolation, then quickly reaches a maximum value, and

Robustness of A

-

Fraction of A nodes removed
— 1to1mapping fromAtoB

Figure 10 Robustness of each coupled Erdés-Rényi network (k = 4 and g = 1.0): multiple versus unique dependencies.
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1+ to 1 mapping from A to B




Khoury et al. Infrastructure Complexity (2015) 2:1

Page 14 of 20

—— Largest component in B for dependency threshold=0.1

Figure 11 Robustness of coupled networks: impact of the dependency threshold requirement. We compare the robustness - here, the area under
the curve defined by the fraction of nodes still alive in network B for varying degrees of attack on network A - of coupled Erdés-Rényi (a),
Barabasi-Albert (b), Watts-Strogatz (c), and ring lattice (d) networks for standard post-attack viability (for I = 0), and when components need to
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finally gradually converges to lower average values corre-
sponding to a situation where the increased coupling has
amplified cascading failure and lead to a lower percolation
threshold.

Figure 14 shows that even for very different net-
work topologies, the average robustness of the system
always decreases when the symbiotic viability condi-
tion expressed by the dependency threshold I' increases
because the conditions for post-attack viability are made
more stringent. This result may have wide implications,
because it demonstrates that the dynamic process of
fragmentation decouples interdependent networks dur-
ing a cascading failure is as important as the process of

percolating failure within each network when it comes
to quantifying and predicting the resilience of interde-
pendent networks. This implies that systems built to rely
on the combined availability of different resources such
as transport, power, ICT, and water can only become
increasingly vulnerable to catastrophic failure. Unfortu-
nately, this propensity of modern infrastructure systems
to require an increasing number of services to work
together in order to function is not likely to reverse. In
this context, one important question one might ask is: is
there a practical and feasible way to reduce the vulnerabil-
ity of such systems to both isolation and cascading failure?
In the next section we propose one possible solution
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Figure 12 Measures of post-attack viability for two interdependent Barabasi-Albert networks. The heat-maps represent respectively the post attack
viability for networks A and B where clusters can survive isolated (I = 0) or where they can only be alive if they meet a dependency threshold

' = 0.1,and 0.2. Each coloured heat-map cell represents the mean aggregate post-attack viability of 25 pairs of random 500-node Barabasi-Albert
networks in function of the degree of coupling between A and B and the average degree of each network.
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Figure 14 Plotting the robustness of two interdependent networks
(Erd6s-Rényi, Barabasi-Albert, Watts-Strogatz, and ring lattice) in
function of the dependency threshold I'. Each robustness score
corresponds to the average of all the robustness values obtained for
each degree of coupling between 0.05 and 1.0.

to this problem: giving infrastructure networks rewiring
capabilities akin to those found in the human brain by
introducing nodes with permutable roles.

Change in symbiotic post-attack viability when
infrastructure nodes have permutable roles

Figure 15 shows that the permutation between uncou-
pled nodes results in an increase in the chance to save
the largest remaining component in each network (+1.8%
for a low symbiotic interdependency, +9.8% for a medium
value, and +3% for a high value of I'), and that the per-
mutation between uncoupled and coupled nodes results
in a large gain in viability(+7% for a low symbiotic inter-
dependency, +24.3% for a medium value, and +32.5% for
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a high value of I'). Also, in the first type of permutation,
maximum gain is obtained for a medium symbiotic inter-
dependency, while in the latter, the best gain happens for
a high symbiotic interdependency. This can be explained
because in order to obtain an increase in the coupling ratio
expressed by the symbiotic viability condition, the min-
imum required number of uncoupled nodes to remove
from the denominator via the first type of permutation
is much higher than the minimum required number of
coupled nodes that can be added in the numerator via
the second type of permutation. When using permutation
between uncoupled nodes, components have to absorb
the accumulated loss resulting from the deactivation of
uncoupled nodes, generally only few of them can be sacri-
ficed, and therefore this results in modest gains of viability
unlikely to be sufficient for stringent conditions imposed
by a high symbiotic viability. On the other hand, as the
second type of permutation generally offers a significant
increase of the coupling ratio in both networks for a
smaller number of permutations, it offers a better gain of
viability for I" = 0.5.

Figure 16 shows that the average number of nodes
saved per trial (reflecting the size of the largest remaining
components) is relatively small for permutations between
uncoupled nodes (18 for a low symbiotic interdependency,
129 for a medium value, and 57 for a high value of I') and
quite large for permutations between uncoupled and cou-
pled nodes (70 for a low symbiotic interdependency, 297
for a medium value, and 539 for a high value of T").

Figures 17 shows that the percentage of dead networks
saved per attack degree follows different distributions
depending on the type of permutation and the level of
symbiotic interdependency. For permutations between
uncoupled nodes, the percentages of saved networks are
lower and distributed over narrower ranges of attack
degrees, indicating that viability gains are more diffi-
cult to achieve. For permutations between uncoupled

dead networks

Figure 15 Percentages of coupled networks preserved when using permutation. Percentages of coupled networks prevented from being
destroyed after attack when using permutation between uncoupled nodes (a) and permutation between uncoupled and coupled nodes (b) for
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Figure 16 The average number of nodes saved per trial when using permutation. The average number of nodes saved per trial when using

permutation between uncoupled nodes (a) and permutation between uncoupled and coupled nodes (b) for low (I' = 0.1), medium (I' = 0.3), and
high (I" = 0.5) symbiotic interdependency values.

I'=0.5

nodes and coupled nodes, the percentages of saved net-
works are higher and distributed over larger ranges of
attack degrees, indicating that viability gains are easier to
achieve. Scenarios with an intermediate value of I' and
a medium attack degree exhibit the highest frequency of
saved networked: up to around 65% of dead networks can
be saved for an attack degree of 0.6 in the case of the
permutation between uncoupled nodes, and up to 95%
of dead networks can be saved for an attack degree of
0.65 for permutations between uncoupled and coupled
nodes. When the attack degree is low, there is little room
for viability gain because in most cases, the remaining
connected components are alive, while when the attack
degree is high, the remaining components are smaller
and more isolated which results in a symbiotic viabil-
ity condition more difficult to achieve with the rapidly
shrinking number of permutable nodes left alive. Per-
mutation will therefore grant a symbiotic interdependent
system the greatest gain in viability for a combination of

intermediate values of attack and a moderately stringent
interdependency threshold condition I'.

Discussion

We have presented changes to ways to define network
interdependency and post-attack viability that signifi-
cantly impact the topological robustness of coupled net-
works to random attacks from our simulation results.
We have first shown that the topological robustness of
more easily fragmented interconnected networks topolo-
gies (such as Watts-Strogattz and ring lattices topologies)
can be significantly improved by allowing multiple largest
remaining components to be viable. This points to the
possibility that in easily fragmented networks, granting
secondary, and by extension smaller connected compo-
nents a greater viability could enhance significantly the
robustness of the whole system. Furthermore, we have
provided evidence that allowing a node in a given net-
work to have multiple counter parts in another network
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Figure 17 The frequency of dead networks saved for each attack degree when using permutation. The frequency of dead networks saved for each
attack degree when using permutation between uncoupled nodes (a) and permutation between uncoupled and coupled nodes (b) for low
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(many-to-one mapping) can be an effective way to trans-
fer damages due to cascading failure from one network
to another without changing the robustness of the over-
all system. This observation could lead to speculate on
the possibility of creating mechanisms of damage transfer,
similar to the way water is transferred betweeen ballasts
in a ship, but instead applied to shifting damages due to
cascading failure in sub-networks. We have also observed
that, in symbiotic networks, the highest robustness can-
not be achieved just by increasing partitioning that would
result in cutting off entire sub-networks, but rather by
finding an optimal degree of coupling that simultaneously
minimises the negative impact of isolation while limiting
the probability of spreading cascading failure. If we were
to speculate on how to translate this topological observa-
tion to the domain of functional robustness of infrastruc-
ture networks, we would observe that cascading failure
being inherent to symbiotic interdependency, the more an
infrastructure depends on connections between multiple
different types of services in order to function properly,
the more likely failure is to spread iteratively through
different parts of a system during periods of stress or per-
turbation. The apparent propensity of modern infrastruc-
ture systems to require an increasing number of services
to function together is likely to amplify that significant
problem. One way to reduce the impact of the resulting
symbiotic interdependency could be to design infrastruc-
ture nodes that can switch between different roles across
distinct interdependent networks, such that they have the
capacity to be functionally permutable. This mean that
these nodes should not fulfil simultaneously multiple roles
(e.g., dual infrastructures), but rather that they would have
the ability to perform only one type of alternate service
at any particular time. These rewiring capabilities akin
to those found in the human brain could possibly give
infrastructure networks the capacity to adapt while lim-
iting the topological sensitivity to disruption associated
with symbiotic interdependency.

While our simulation results can provide some insight
into how isolation and other mechanisms can affect
robustness in interdependent networks, there are substan-
tial limitations to their applicability and generality. So far,
we have limited our analysis to a pair of coupled networks,
but real-world problems can display a dizzying number
of interconnected systems. In such cases, the viability of
a component will not just depend on being connected
to only one other network, but to many more. With the
increase of the dimensionality of dependency thresholds,
the robustness of the whole system might become drasti-
cally lower. If the effects of high-dimensional dependency
thresholds over the robustness of such systems are so
far not explored, the implications of a one-dimensional
dependency threshold as shown in this paper are already
far reaching. Moreover, our models are biased in that
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choosing the nodes coupled between networks randomly
does not necessarily reflect the attachment preferences
encountered in real world cases. Other selection strate-
gies such as correlation based on nodes with the highest
degree, or the highest betweenness centrality, or even spa-
tially embedded networks (Beyeler et al. 2007; Gao et al.
2014; LaViolette et al. 2006; Newman 2003) would result
in different biases. Similarly, one could argue that ran-
dom attacks are just one way to destroy the networks, and
that other attack strategies based on different measures of
centrality or system load as in (Su et al. 2014) might give
a different view of the problem. The proposed introduc-
tion of permutable nodes that would give interconnected
systems rewiring capabilities, and guarantee a higher sym-
biotic viability seems sound from a topological point of
view, but would require some feasibility study from the
point of view of functional robustness and cost implica-
tions to make it applicable to real-life networks such as
the industrial complex when day to day operations depend
on the simultaneous availability of multiple technologies,
ecosystems where the mutually dependent species can-
not exist in isolation, or mutually dependent transport
networks.
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